skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cardenas, Jorge_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Surface acoustic waves (SAWs) that propagate on the surface of a solid at MHz frequencies are widely used in sensing, communication, and acoustic tweezers. However, their properties are difficult to be tuned electrically, and current devices suffer from complicated configurations, complicated tuning mechanisms, or small ranges of tunability. Here a structure featuring a thin‐film transistor configuration is proposed to achieve electrically tunable SAW propagation based on conductivity tuning. When a DC gate voltage is applied, the on‐site conductivity of the piezoelectric substrate is modulated, which leads to velocity and amplitude tuning of SAWs. The use of carbon nanotubes and crystalline nanocellulose as the channel and gate materials results in high tuning capacity and low gate voltage requirement. The tunability is manifested by a 2.5% phase velocity tuning and near 10 dB on/off switching of the signals. The proposed device holds the potential for the next generation SAW‐based devices. 
    more » « less